第6章 擴展備忘錄記憶
黑漆漆的屋子裏傳來一陣劇烈聲響,鮑伯必須放大膽子闖入屋內一探究竟。他害怕極了:傳說這間屋子鬧鬼。假如能有一根棍子保護自己,他會覺得安全些,於是,他到他的棒球器材中,看看有什麽合用的。他發現一隻bat,非常巨大、顏色棕黑,在陰暗的房間裏飛來飛去。他再也不需要害怕了。
工作記憶(working memory)——又稱為備忘錄記憶——是理解這則故事不可或缺的關鍵要點。這則故事略顯突兀,因為它刻意將棒球棍(baseball bat)的意象放入你的工作記憶,然後畫麵猛地變成一個“顏色棕黑:飛來飛去”的東西(即蝙蝠,bat)。你的工作記憶一時還停在棒球棍的意象,怔了半晌才修正過來。
工作記憶是介於注意力和長期記憶之間的中間階段。它是暫存的備忘錄,一切記憶存入腦海之前,都得先在這兒接受管理——你的心智組織整理資訊之際,記憶便暫存於此。沒先經過備忘錄記憶這一關,任何資訊——包括一般記憶以及塑造魔幻記憶的種種記憶——都無法在你的永久性記憶中登堂入室。
這項記憶功能之所以又名“工作”記憶,是因為它是記憶做工作的地方。這兒是你存放所見所聞的前半部,以便理解後半部的地方。它是你的利可貼便條紙,在你決定事情是否有保留的必要之前,至少先幫你記住一會兒。它是你心裏盤算著到五金行該怎麽走,或者孩子的數學題目該怎麽解最好時,腦子裏作筆記的地方。它的職責是管理可能走進記憶的外界資訊,以及管理從你靜置的記憶儲存空間提取出來、移入焦點的資訊。
如果你能理解本章開頭的故事,表示你有一副容量不小的工作記憶。許多人看不懂這則故事,因為它在他們的工作記憶裏塞進太多資訊。要領會故事最後的轉折,你必須記住結局之前的一切事實,沒有太多人的工作記憶,可以擁有足以應付此等訊息的容量。
工作記憶盡管占據記憶網絡的顯著地位,卻具有嚴重缺陷。這是本薄薄的備忘錄,你同時能有幾個念頭在腦中跳動、同時能從永久記憶中提取幾份回憶,都受它所限。由於工作記憶設下了重重限製,任何能強化它的努力,對我們的記憶能力——包括魔幻記憶——都具有深遠影響。我們將在本章說明如何克服備忘錄記憶的極限,使它臣服於魔幻記憶之下。首先,先針對你的工作記憶再多做幾項測驗。
文字記憶力測驗
閱讀以下各項句子,然後蓋住它們。
那位青果商人賣很多蘋果跟柳橙。
該名水手已數度環繞世界。
這房子擁有大扇窗戶和厚實雄偉的紅木大門。
書店老板穿過房間,麵露怒色,把手稿甩到椅子上。
蓋好句子之後,試著回想每一句話的最後一個字。如果你能夠記住每一句話的最後一個字(如柳橙、世界等),即表示你擁有傑出的文字工作記憶。這是衡量你的閱讀理解能力的好指標。在這項測驗上成績出色的大學生,也擅於閱讀理解。文字工作記憶容量不大的學生,這些人理解複雜文句段落的速度更快、正確度更高。
數字廣度測驗
如果你料想自己的數字記性,強過你的文字記性,請進行這項數字廣度測驗。最好找別人念給你聽,不要自己閱讀。這是因為此處測試的記憶,具有很強的聽覺成分。測驗人應朗讀每一列數字,暫停一會兒,然後請你複誦。測驗人應同時紀錄你答對的數字。
3—4—7:暫停,測驗。
8—1—6—5—7:暫停,測驗。
3—1—6—8—9—2—4—7:暫停,測驗。
5—9—6—3—2—1—7—4—8—6—2—3—4:暫停,測驗。
複誦第一列及第二列數字,對你來說應不費吹灰之力,然而隨著數列愈來愈長,你勢必開始覺得力不從心,發現自己聽完了最後一個數字,第一個數字已經從你的腦中消失了。在最長的數列中,你也許記住了開頭及最後幾個數字,但中間的數字是一片空白。十之八九,你最多隻能記住7個數字左右。那就是工作記憶的容量。一旦達到極限,你的心智必須趕跑一個數字,才能讓另一個數字進來。
你的一切作為,皆需要仰賴工作記憶。不論煮咖啡、寫信、計算還缺多少零錢,或者運用電腦解一道題,都得靠工作記憶記住剛完成的項目、計劃下一步該怎麽走。工作記憶是智慧資訊處理的最基本條件,每一台現代化的電腦都少不了它。電腦的記憶備忘錄稱為隨機存取記憶體,簡稱RAM。RAM存放的資訊處於最活躍的狀態,可以最快速地提取。同樣的,工作記憶將資訊放在心智唾手可得的地方——要找到這些資訊,不須你多費時間和力氣去搜尋心智硬碟。
如果不是工作記憶的幫忙,就連最簡單的對話也辦不到。備忘錄記憶幫助我們的心智留住文字,直到可以破解它們的意義為止。當你聽到以下的敘述(分兩種可能的結局),你無法知道說話者的意思,直到你聽見最後幾個字,然後回想句子的開頭:“他邁開大步穿越court,向judge抗議對手違規使用(不合規定的球拍)(未經許可的證據)。”
惟有當你聽到這兩種可能的結局的其中之一,才能理解說話者談論的是律師或網球選手(court可以是球場或法庭,而judge則可以是裁判或法官,讀者須聽完整段話,才能判定這兩個多義字在句中的正確涵義是什麽)。你可以做到這一點,是因為你的備忘錄記憶留存了句首幾個字,讓你可以立刻參考它們的意義。
我們其實擁有許多小型的記憶備忘錄。舉例而言,記住對話時,使用的是聲音(特別是文字)的工作記憶。你或許對視覺影像的備忘錄也不陌生;它讓你記住匆匆一瞥下的印象。這些小型備忘錄皆屬工作記憶係統下的一環,也都具有相同極限。即便將所有小型備忘錄加起來,工作記憶仍隻能應付有限資訊。正如前麵提過的,大多數人一次隻能記住7件事——最少5件、最多9件。此極限是恒常不變的,不論你試圖記住的是文字、數字、影像、聲音、符號或概念。
這其中有壞消息也有好消息。
首先,壞消息是:工作記憶的極限是每個人、每件事都得麵對的。最早發現人類記憶這一特性的心理學家——喬治·米勒(George Miller),審視數十件似乎對記憶要求頗低的研究。好比說,人們受命聆聽聲音,然後盡可能區分各種聲響,或者在嚐了味道之後,分辨各種不同的鹽分濃度。這些無非都是關於記憶的測驗,因為人們必須記住他們聽過或嚐過的,才能分辨其中的差異。
不論這些發現是關於聲調或味覺,結果如出一轍。聆聽者可以輕易分辨兩三種聲調,但隨著他們聽到的聲調愈來愈多,出錯的機率也愈高。最高段的聆聽者,隻能正確無誤地聽出六種不同的聲調。其他被吩咐分辨音量大小的人,一次最多隻能分出五種音量。而品嚐六種鹽水濃度的人,最多隻能分辨四種濃度而不出錯。還有些人接受的測試,要求他們在一瞥之下指出自己見到哪些撲克牌。記住的牌數總是在七張左右。不論任何國家、任何語言或任何實驗,這樣的極限總是反複出現。
米勒斷定:“我們具有有限而渺小的容量進行此類單向判斷,而在簡單的感官屬性之間,此容量並未出現巨大變化。”他把此平均容量稱為“神奇數字七”。米勒指出,我們的心智和七特別合拍,這早已不是新鮮事:“世界七大奇觀、七海、七大罪惡、阿特拉斯神的七個女兒、人生七階段、七原色、音階的七音符、一周七天……”自古以來,人們就跟七這個數字特別有緣。原因之一,或許因為那是我們的心智在任何一瞬間所能掌握的最高限度吧。這就是工作記憶的容量。
較小的工作記憶也有其好處;它迫使我們丟棄不值得保存的記憶。想像一下,假使工作記憶記得每一件匆匆掠過的芝麻小事,若不能遺忘,我們將陷入由微不足道的事實與印象堆積的泥濘之中,心智就成了“印象垃圾堆”了。俄羅斯心理學家正是如此形容所羅門。謝雪夫斯基(Solomon Shereshevskii)的心智。謝雪夫斯基記得他曾聽過或見過的所有數字、文字和感官體驗,繈褓時期的記憶,和幾天前才發生的事情都曆曆在目。他可以在兩分鍾之內記住五十位數的數字,假使在十五年之後要求他回憶這串數字,仍能完整複誦毫無瑕疵。可以想像,謝雪夫斯基窮其晚年試圖遺忘腦中氾濫成災的無用記憶。
建立嚴謹的組塊
發現工作記憶極限所引發的好消息是,你可以繞個彎兒回避極限——方法就是組塊(chunking)。我們無法透過學習,突破平均一次隻能保留七件資訊的極限,但我們可以豐富每一件資訊的內容。以金錢打比方——你的皮包能放七個銅板,但這些銅板可以是一分錢,也可以是一塊錢銀幣。你無法一口氣記住七個以上的個位數字,但你可以同時記住七組五位數數字。七個字、七個詞匯、七句話、七個段落、七個章節、七本書。如何辦到?答案是通過組塊。
當我們學習說話或閱讀時,自然而然就會進行組塊。學習一項語言時,我們將語言的一個個小片斷(即聲音)拚湊成較大的片斷。學著閱讀的兒童,首先從認識字母開始,然後逐漸將字母叢組成音節和文字。很快地,七個字的工作記憶變成七句話的記憶,然後經過長期練習,又擴大成七個段落的記憶。我們可以透過組織和叢組,以智取勝七個項目的記憶極限。
匿名S·F·的大學生是最鮮明的例子。研究人員選擇他進行研究,因為他是個平凡學生,記憶測驗和大學入學考試的表現都不突出。實驗者並不知道S·F·熱中於越野賽跑,是學校田徑隊中活躍的一份子。實驗一開始,S·F·回想數字串的能力乏善可陳。和實驗中的其他學生一樣,經過5天反複聆聽和背頌數字之後,他覺得記住8個數字已經是自己的極限了。雖說如此,實驗仍繼續進行。
接著,驚人的事情發生了。他所能記住的數字串開始逐漸加長,而且幅度持續上升。到了實驗第39天,S·F·可以背頌一串22個數字,到了第80天,記憶容量提高到大約70個數字。
S·F·私下發明一套方法記住成組的數字,而非試著個別背頌。利用他在田徑及越野賽跑上的經驗,他將數字串換算成跑步時間。例如,三—四—九—二這串數字在他腦中變成了三:四九·二——接近世界紀錄的一英哩賽跑速度。這四個數字融合成一樁單一資訊,賦予工作記憶容納其他六組數字的空間。到了實驗尾聲,受過250多個鍾頭的訓練,S·F·已將數字記憶力由原本的8個數字,擴大到超過80個數字。這項進步並非因為他加大了工作記憶的容量;他仍然隻能記得7或8個物件。S·F·所做的,是將資訊群聚在一起,以便讓更多資訊擠進工作記憶所能容納的7項記憶裏。
人們無不在下意識中進行組塊。我們很久以前就學會這麽做,以致於它感覺就像思維的一部分那樣自然。我們的心智喜歡走捷徑,尤其是可以拚湊在一起,以便更輕易的記住資訊片斷。舉例而言,你也許可以輕易理解並記住這些字串:TV、IBM、TWA(美國環球航空公司)、USSR(蘇聯)。然而,當這些字母以不同方式群組在一起時——IW、BMV、SRU、SATT,你的理解和記憶速度就變得遲緩許多。
數字叢組是我們的家常便飯,我們用各種別具意義的模式將它們歸並起來。電話號碼2123456很容易記住,因為它是一組連續號碼。寄物櫃密碼——右9,左11,右10很容易記住,因為若將最後兩碼倒過來,就成了舉世轟動的日期(2001年的九9.11恐怖攻擊)。也許每個人都有一套獨特的拚湊方法,讓數字組合產生意義、容易記住。S·F·采用的是他個人對賽跑時間的知識,其他常見的連結方法包括生日、知名曆史日期以及一天中的重大時間。
除了為說話及閱讀而學習叢組之外,我們還學著將文化上的訊息——例如常用符號群聚起來。“一條直線斜穿過紅色圓圈”是單一組塊,意味著“此活動是被禁止或違法的”。此外,還有行動或程序組塊:許多人將某些活動視為單一行為,例如綁鞋帶或剝橘子皮。
組塊是各行各業的專家知識淵博且記憶驚人的原因之一,不論他們擅於打橋牌、撰寫電腦程式或烹調意大利美食,其專業領域知識都是以龐大的組塊進行保存。舉例而言,假設有個擅長打寶藏撲克(stud poker)的好手,拿到一張方塊9的暗牌,其餘三張麵向上的牌分別是紅心8、方塊10和黑桃7,他可以將這手牌視為單一一樁有意義的資訊——也就是值得下注的牌。剛入門的玩家就得將這手牌想成四張獨立的組塊,因而得絞盡腦汁思索應下多大的賭注。並非所有組塊都是渾然天成的。有時候,各項資訊之間並不存在明顯的模式,也不具備有涵意的連結。購物單上的各項物品,也許看起來各自獨立、互不相幹。成功的組塊往往需要仔細推敲與分析,你必須在記憶中搜尋可以將每一片資訊串聯起來的隱藏特征。群組資訊的方法有千百種,從視覺圖案(如共同的顏色或形狀)或聽覺模式(如韻腳——這就是韻文容易記住的原因)等外在特質,到模糊難辦的特征,如曆史的連貫。
組塊若借助備忘錄記憶之力,且幫助你取得能轉變為魔幻記憶的知識,恐怕比用來記憶電話號碼或購物清單的組塊,需要花更多心血。這種組塊是用來組織和記憶複雜概念的心智流程。拆解問題、汲取其中片斷、組合成答案,然後記在心中、運用於日後問題的組塊方式,就是一個很好的例子。
組塊可以分為“鬆散的”或“嚴謹的”,取決於各個片斷之間的關聯性。在鬆散的組塊中,其間的關係是模糊的、或許需要一點想像力的。醫學院學生為解剖學考試做準備時,將器官名稱的第一個英文字母組成縮寫,借此記住一長串複雜部位,運用的就是鬆散的組塊。一名醫學院學生采用的組塊是“GET **ASH’D”——急性胰髒炎的成因,也就是Gallstones(膽結石)、Ethanol(酒精)、Trauma(外傷)、Steroids(類固醇)、Mumps(腮腺炎)、Autoimmune(自身免疫)、Scorpion bites(蠍子咬傷)、Hyperlipidemia(高血脂症)及Drugs(藥物)。
借由字首字母串聯在一起的事物,關係可能很薄弱,因為一個字的拚法往往和它的意義、作用或其他重要特征無關。醫學院學生唯有在行醫時反複使用這些鬆散的組塊,才可能記住組塊涵蓋的資訊。否則,這些資訊便會慢慢褪色。
較佳的記憶方式,是采用更具意義、更嚴謹的組塊方法。嚴謹的組塊所涵蓋的資訊,不僅在於外在相關性——還具備功能或重要性上的關聯,例如刷牙必經的步驟。雖然有時需要多費一些心血和注意力才能建立嚴謹的組塊,但此類組塊更容易記住。資訊可能需要經過抽絲剝繭,才能找到共同而有意義的特質。
尋找最佳的模式
你可以從成群的資訊中發現各種形形色色的模式。當然,許多明顯的模式是肉眼立即可見的,例如形狀、顏色、尺寸或質地。模式若能反映出不同資訊間的相對重要性,就比較容易被人記住。棋手記得多種不同的開局走法,並非因為走法本身雷同,而是因為它們對棋局的發展影響深遠。在棋賽中,某些開局慣例創造的局勢,就是比別種走法計高一籌。
曾經納悶幹練的服務生如何能在替客人點菜時聆聽一大堆菜名、各種方式的口味調整以及最後一秒的菜色更換,然後神奇地將正確餐點端上桌來,遞給正確的客人嗎?秘訣就是根據模式進行組塊。研究人員研究一群服務生(包括J·C·在內,他因能同時記住二十份完整的晚餐套餐內容而大為出名),因而發現這個竅門。為了查明J·C·是如何養成這門絕技的,研究人員在實驗室裏搭了間假餐廳,提供八道可以有五種不同生熟度(三分熟到全熟)的肉食主菜、五種沙拉醬料和三種蔬菜。“餐廳”內有幾張桌子,可以坐二到八個客人。總而言之,J·C·必須記住的訂單組合,一共有超過600多種可能性。
J·C·和其他服務生分別接受許多位“顧客”的訂單,但J·C·是惟一一個記住所有菜色、一字不差的服務生。他的訣竅就是組塊和貼標簽。相對於試圖記住一連串單獨的訂單,每一份訂單包含一道主菜、一種沙拉醬及一份蔬菜,J·C·的做法是將訂單歸類在一起。他將每一桌客人點的主菜、沙拉醬和蔬菜分別歸類,然後在心裏替每一組菜色貼上標簽或模式。舉例而言,他將肉的熟度以數字取代——一代表三分熟,一直到五代表全熟——然後記住一串數字。如果同桌四位客人分別要求三分、五分、七分和三分的熟度,他將以“一—二—四—一”記憶這樣的組塊。他以字母代替各種沙拉醬名稱,藍紋乳酪是“B”、油醋醬是“O”、而千島醬是“T”。四名客人點的若是一份藍紋乳酪、兩份油醋醬、一份千島醬,就成了“B—O—O—T”。
借由創造一係列對他個人別具意義的模式,J·C·將他的工作記憶擴大到至少二十個項目。以下是他可以用來擴展工作記憶容量的其他方法:
●運用串聯性資訊於指令一類的清單上,例如在一連串行動中,某一步驟的最後一個動作影射出下一個動作。
●運用視覺模式,例如顏色、質地、尺寸或空間位置。
●運用字母、文字或數字模式,例如重複的字母、字首、字尾,或總和永遠保持不變的各種數字組合。
有意義的重組
模式無所不在,而有意義的模式是最有用的模式。它們不僅幫助你擴大記憶容量,當你再次碰到類似問題時,也能強化心智的思考能力。
數年以前,一名教師在他10歲兒童的班級中提出一道問題。他指示學生找出1加到100的數字總和(也就是1+2+3+…+98+99+100)。這名教師原本以為學生得花好長時間才能找出答案,但有一位學生在他還沒來得及完成題目說明之前,就交了答案。老師和其他同學計算完畢之後,才一起比較所有答案。隻有那名動作最快的學生得到正確答案,因為他窺見數字加總方式的模式。這些數字可以配對,每一對的和都是101——1+100=101,2+99=101,3+98=101…諸如此類。1到100之間共有50對這樣的數字,所以答案就是50乘以101,即5050。
如果你沒發現這樣的模式,別氣餒,這名10歲兒童是數學天才高斯(Carl Frederich Gauss),他是史上最偉大的數學家之一。如今在他指點了方向之後,下回遇到類似問題,記憶會讓我們更輕鬆地解題。1加到99的總和是多少?你不需要花功夫從頭算起,其總和是你已知的1加到100之和(5050)減去多餘的100,即4950。
模型有助於記憶
有時候,將事情視為一套程序或機製,會更容易記住。將解題的各項步驟記成一個完整解答,便能在魔幻記憶中存入“解答組塊”,可以在日後遭遇類似問題時拿出來使用。此種方法大幅度強化了我們的思維能力,因為許多問題是一般性的——你一而再地遭遇相同問題,隻不過問題的情境和偽裝各有不同罷了。投資問題、距離——速度——時間問題、成本效益問題,以及日常生活動輒遇到的百分比問題。如果你學會洞察隱藏在各種細節下的一般性問題,那麽你不僅能記住問題,也能記住問題的解答。
舉例而言,許多人經常遭遇可以歸類於“沉沒成本”(sunk-cost)這類一般性範疇的問題或決策,以下是一些典型範例:
你花了大價錢修理汽車,更換點火係統、煞車皮和避震器,隔一星期後,你發現它還需要一組新的變速箱。在決定是否投資更多錢或幹脆擺脫它的過程中,你將原已投資或沉入其中的成本納入考量。
你持有的一飛衝天公司股份,股價從買進時的20元跌到每股10元。在決定拋售與否的過程中,你將原本的投資金額納入考量。
不過,以原本投入的金額作為投資的衡量基礎,是徒勞無益的;考慮其未來價值才是優異許多的做法。如果更換新變速箱能讓你的車子多跑5年,將是一項劃算的投資。如果你認為一飛衝天公司明年將有亮麗的表現,其股票就值得繼續持有。你所投入的金額多寡已無關宏旨——沉沒成本早已付諸流水。
以此方式學習解答,創造出解決問題的迷你心智,時候到了就會跳出來運作。迷你心智的一切動作都經過組塊分類,自動自發地運作。你也許已具備許多解決問題的迷你心智,要使它們發揮最大潛能,你必須將問題大卸8塊,直到達到迷你心智可以應付的規模。倒推法(work-backward)是拆解問題的方式之一;透過理解目標、找出達到目標必經的步驟,進而解決問題。與此密切相關的做法是過程——結果法(means-ends);相對於朝終極目標努力,你試著解決一連串較小的問題,而經由小問題的整合而解決較大的問題。此外還有爬坡法(hill-climbing)——挑出能讓你更接近答案的步驟,即便這些步驟並非最終的解答。假使進展並不顯著,你就退後一步,投入能讓你更接近最終解答的其他步驟。透過練習及反複解題的經驗,你可以將每一種方法融合成日後在下意識中運用的單一過程,而非一連串獨立的步驟。
組塊是強化及拓展記憶的有效方法。你將在下一章讀到多種儲存記憶的策略,有助於你隨時隨地提取記憶,尤其是在你需要魔幻記憶的一刻。
備忘錄記憶訓練
1、這項練習要求你伸展你的備忘錄記憶。閱讀以下段落,蓋住它,然後回答問題。
昨兒個和鮑伯、保羅、羅伯和其餘死黨坐在燒烤酒吧裏,我開始覺得心神不寧。傑克在點唱機裏丟進一枚兩毛五的銅板,機器咆哮著最近流行的一首基督教饒舌歌。我仔細研究這班哥兒們對音樂的反應,頓覺毛骨悚然。尤其讓我不安的,是我最好的朋友臉上的表情。約翰看來深深沉迷於其中,狂亂地隨著節奏敲打桌麵。噯,其他少年喜歡的東西,我多半也喜歡。我喜歡金發女孩、深色卷發的女孩,事實上,所有女孩都不賴。我喜歡奶昔、足球賽和海灘派對。我喜歡牛仔褲、運動衫和思凱傑球鞋。我並不討厭饒舌歌,隻是覺得不應過於大驚小怪。瞧他那樣,全然入神,沉溺於音樂的迷幻之中。
·誰全然入神地沉溺於音樂迷幻之中?
解答:約翰完全迷醉於音樂之中。如果答對這道題,表示你的備忘錄記憶將段落中的名字和資訊整理成幾份大組塊。組塊是一堆亂糟糟的獨立事實:它是一群相關資訊,像是男孩子們的形象、他們的反應,以及其反應對其他男孩的影響。段落中的特定字眼,例如“基督教饒舌歌”或許激發一個由形象、聯想和詮釋構成的大型組塊。如果你答錯了,恐怕是因為你不曉得要在工作記憶裏保留哪些資訊。這段敘述並未透露任何線索,告訴你何者為重。況且,基督教饒舌歌——一種不尋常的音樂,出現在段落中,可能會卡住你的工作記憶,幹擾你記住更多資訊的能力。
2、以下方塊由9個不同數字組成,但這9個數字具備獨特的一致性:當你加總每列數字時——不論橫向、縱向或對角線——其總和一律為15。這項練習旨在設計一套記住數字順序的方式,以便將方塊融合成單一組塊保存於記憶中。數字構成的組塊或許很乏味,而且容易被人遺忘,但是由有趣的資訊構成的組塊將能創造較深刻的記憶,舉例而言,“For nine to free five, seven ate one six”(這段口訣與“49235,7816”諧音,其字麵意義是“9若要解放5,7就要吃掉一個6”)。你也可以進行橫向組塊,形成三個日期,每個日期之前額外加上一個人。如此一來,這方塊就變成了1492——哥倫布發現北美大陸:1357——兒子與先生的年齡;1816——數座火山爆發,造成“沒有夏天的一年”。請試著找出其他記憶數字順序的方法。
4
9
2
3
5
7
8
1
6
3、這道練習列出各色各樣的物品,其中大多出現兩次,但某些物品隻出現一次。請花4分鍾瀏覽圖案,然後找出隻出現一次的物件。不要一邊瀏覽一邊紀錄答案,將圖案保留在你的工作記憶中,直到看完為止,然後再寫下來,以便檢查答案。
解答:隻出現一次的物品為雞、腳踏車、帆船、鞋與房子。辨認並記住單一物件——尤其當你刻意將出現兩次的物品摒除記憶——是讓工作記憶做伸展操的好方法。
4、一般性記憶僅在備忘錄記憶中儲存個別資訊,而魔幻記憶則讓備忘錄記憶中的物件形成組塊,因而擴大了它的容量。魔幻記憶的做法,是幫助你在物件之間尋找有意義的連結,借此讓你牢記物件。當麵臨一群重要資訊時,例如必須牢記的數字或日期,這種組塊方法極其有效。如果你記不住此類生活資訊,請利用以下範例激勵自己,開始為你的重要資訊進行群組。
個人識別號碼:轉換成某重要誕辰的月與日。
電腦密碼:一位朋友采用孩提時代的寵物名字,每當登入電腦時,便想像那隻寵物環繞腳邊的情景。
社會安全號碼:這三組號碼可以被記成時間加日期、一筆金額、一連串重量或尺度,或者記成四個人的年齡(美國社會安全號碼共有九碼,一般切成三組號碼紀錄,即×××—××—××××)。另一種可能方式是根據數字的固有模式進行群組——例如數字恰好有連續性、加總之後彼此相等,或者某一組數字是另一組數字倒過來的順序。
複雜程序:你的貓需要定期注射疫苗,你偶爾必須親自動手注射。獸醫交代你以下指令:在貓後頸的皮膚上捏出一個凹口,插入針筒,與貓背保持平行。你也許可以想像以下影像,借此記住整套流程:“搭個帳篷——從開口走入”。
組合密碼鎖:組合密碼可以化為韻律詩,例如右8、左22、右3便可透過這樣的口訣記住:“eight is two, two late to be free”(注:口訣中的“late”及“free”分別與“left”〔左〕及“three”〔3〕諧音)。
5、以下是由36個各含一種圖形的方格組成的矩陣,有些圖形出現一次以上。瀏覽每一列方格,在各圖形首次出現的地方做記號。當你注視各方格時,你必須判斷之前是否看過相同圖形(試著不要往前回顧)。花一分鍾瀏覽整個矩陣,看看你是否能正確標出各圖形首次出現的地方。
解答:這項訓練迫使你的魔幻記憶再次延展,程度比其他練習更深。這是因為每一列均含有九種圖形,比一般記憶容量多出兩個項目。再者,某幾列包含未出現於其他各列的圖形。你很難以視覺方式進行群組,但語言標簽可以對此有所幫助。假如替各個圖形取名,可能覺得容易些:旗子、埃舍爾式的圖形(M.C. Escher,1898-1972,荷蘭畫家,其作品融合藝術與縝密的科學,擅長以幾何轉換創造出幻覺般的幾何構圖)、棋盤、球、點。